GENERALIZED JENSENS EQUATIONS IN BANACH MODULES OVER A C∗-ALGEBRA AND ITS UNITARY GROUP
نویسندگان
چکیده
منابع مشابه
Stability of a Bi-Additive Functional Equation in Banach Modules Over a C -Algebra
In 1940, Ulam proposed the stability problem see 1 . Let G1 be a group, and let G2 be a metric group with the metric d ·, · . Given ε > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d h xy , h x h y < δ for all x, y ∈ G1 then there is a homomorphism H : G1 → G2 with d h x ,H x < ε for all x ∈ G1? In 1941, this problem was solved by Hyers 2 in the case o...
متن کاملHomological Algebra for Banach Modules?
Injectivity is an important concept in algebra, homotopy theory and elsewhere. We study the ‘injectivity consequence’ of morphisms of a category: a morphism h is a consequence of a set H of morphisms if every object injective w.r.t. all members of H is also injective w.r.t. h. We formulate a very simple logic which is always sound, i.e., whenever a proof of h from assumptions in H exists, then ...
متن کاملMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملVerma modules over the generalized Heisenberg-Virasoro algebra
For any additive subgroup G of an arbitrary field F of characteristic zero, there corresponds a generalized Heisenberg-Virasoro algebra L[G]. Given a total order of G compatible with its group structure, and any h, hI , c, cI , cLI ∈ F, a Verma module M̃(h, hI , c, cI , cLI) over L[G] is defined. In the this note, the irreducibility of Verma modules M̃(h, hI , c, cI , cLI) is completely determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2003
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407583